Computational Analysis of Microfluidic Biofuel Cells
نویسندگان
چکیده
Biofuel cells are devices that convert biochemical energy directly into electrical energy. They are distinguished from conventional fuel cells by the use of biocatalysts (enzymes/microbes) to generate electricity from organic substrates such as carbohydrates. Microfluidic biofuel cells exploit the difficulty of mixing at low Reynolds number to eliminate the use of membranes, which are commonly used in conventional fuel cell systems. Simulation of the microfluidic fuel cell by solution of the governing 3-D conservation equations (flow, species transport) reveals that the oxygen transport limits the performance of the cathode compartment. An exponential decay in the availability of oxygen at the cathode is also observed, indicating that increasing the number of electrode pairs reduces the overall current density. This conclusion is consistent with experimental observations. Increasing electrolyte flow rates can reduce the mass transport limitations by decreasing the diffusion thickness, but disparity between the anolyte and catholyte flow rates can induce wastage of dissolved oxygen.
منابع مشابه
Glucose-based Biofuel Cells: Nanotechnology as a Vital Science in Biofuel Cells Performance
Nanotechnology has opened up new opportunities for the design of nanoscale electronic devices suitable for developing high-performance biofuel cells. Glucose-based biofuel cells as green energy sources can be a powerful tool in the service of small-scale power source technology as it provides a latent potential to supply power for various implantable medical electronic devices. By using physiol...
متن کاملطراحی و ساخت سیستم میکروفلوییدی و ارزیابی قابلیت آن جهت تولید اینترلوکین 2 توسط سلول های جورکت
Background and purpose: Microfluidic systems are microstructures that could be used to improve the conventional cell culture protocols used in laboratories. The aim of this research was to design and construct the microfluidic system and evaluating its ability to produce IL-2 by jurkat cells. Material and methods: At first, the sketch of microfluidic canals was designed by Corel draw and wa...
متن کاملFluorescent Contrast agent Based on Graphene Quantum Dots Decorated Mesoporous Silica Nanoparticles for Detecting and Sorting Cancer Cells
Background and Objectives: The inability of classic fluorescence-activated cell sorting to single cancer cell sorting is one of the most significant drawbacks of this method. The sorting of cancer cells in microdroplets significantly influences our ability to analyze cancer cell proteins. Material and Methods: We adapted a developed microfluidic device as a 3D in vitro model to sorted MCF-7 c...
متن کاملEffect of membrane on power density of ethanol/O2 biofuel cell
A biofuel cell is a device for converting chemical energy to electrical energy by a simple way. A high-impact anode is prepared in this research. Here, carboxylated multiwall carbon nanotube (COOH-MWCNT), polydiallyldimethyl ammonium chloride (PDDA) and alcohol dehydrogenase were cast on modified glassy carbon with polymethylene green to construct the bioanode for ...
متن کاملEffect of support on power output of ethanol/O2 biofuel cell
Enzymatic biofuel cells have many great usages as a small power source for medical and environmental applications. In this paper, we employed carboxylated multiwall carbon nanotube- (1-ethyl-3-methylimidazolium bis (trifluoromethyl sulfonyl) imide) ionic liquid nanocomposite on two different electrodes (glassy carbon and carbon felt) for immobilizing alcohol dehydrogenase. The properties of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004